How Do Parallel Line Proofs Determine Interior Angles in a Triangle?

msimard8
Messages
58
Reaction score
0
I need to prove that <acb is equal to one of the other interior angles of triangle abc.

help when pic uploads
 

Attachments

  • example222.jpg
    example222.jpg
    27.8 KB · Views: 450
Physics news on Phys.org
What do you know about the size of an exterior angle relative to the size of the other two angles in the interior?
If CZ, the bisector of that angle, is parallel to AB, what does that tell you about angles BAC and ACZ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top