Protons released from rest in a vacuum.

mattkuk
Messages
3
Reaction score
0

Homework Statement



If two protons start out at rest relative to each other, separated by 0.1 nanometers in vacuum, and then they are released, calculate their relative positions after 10 seconds.

Homework Equations



F = (kq^2)/r^2 = m*a

The Attempt at a Solution



I am fairly certain this needs to be solved using an integral since the force is constantly changing with the distance between the two protons, but I'm quite confused what it would have respect to. Time perhaps, ranging from 0 to 10 seconds and using a = dv/dt.
 
Physics news on Phys.org
First, we are assuming that the protons can be described classically, correct?

Second, what do we know about position (in this case r) and its relation to acceleration (a)?
 
Yes assuming a classically described proton. What is known about position in relation to acceleration is at time t = zero seconds, acceleration is equal to zero. At the instant the protons are released acceleration would be F/m which would be (k*q^2)/(m*r^2) where k = 8.89*10^9, q = 1.602*10^-19, m = 1.673*10^-27, and r = .1nm so a = 8.513*10^27 but as the protons become further apart the value of r increases, reducing F and therefor reduces the acceleration.
 
What I was trying to get at is dr/dt=v and dv/dt=a

Using initial conditions (r(0)=.1nm, v(0)=0, a(0)=kq^2/m(.1nm)^2), and after you have established the correct and useful coordinates, you should get a function of r in terms of a, or vice versa.
 
So using dr/dt=v and dv/dt=a and a=kq^2/mr^2 you could integrate a with respect to t twice to find v and then r in terms of a time t?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...

Similar threads

Back
Top