Prove angular momentum operator identity

Tom_12
Messages
6
Reaction score
0

Homework Statement



Using the operator identity:
<br /> \hat{L}^2=\hat{L}_-\hat{L}_+ +\hat{L}_z^2 + \hbar\hat{L}_z<br /> show explicitly:
<br /> \hat{L}^2 = -\hbar^2 \left[<br /> \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2} +<br /> \frac{1}{\sin\theta} \frac{\partial}{\partial\theta}<br /> \left(\sin\theta\frac{\partial}{\partial\theta}\right)<br /> \right]<br />(Note: all L are operators, i.e. L(hat))

Homework Equations


<br /> \hat{L}_\pm = \hbar e^{\pm i\phi}\left(\pm \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \\<br /> \hat{L}_z = -i\hbar \frac{\partial}{\partial\phi}<br />

The Attempt at a Solution



\begin{align*}
\hat{L}^2 &= \hat{L}_-\hat{L}_+ + \hat{L}_z^2 + \hbar \hat{L}_z \\
&= \hbar e^{-i\phi}\left(- \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \times \hbar e^{+i\phi}\left(+ \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) + \left(-i\hbar \frac{\partial}{\partial\phi}\right)^2 + \hbar \left(-i\hbar \frac{\partial}{\partial\phi}\right) \\
&= \hbar^2\left[\left(- \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\left( \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\right] -\hbar^2\frac{\partial^2}{\partial\phi^2} - i\hbar^2\frac{\partial}{\partial\phi} \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\cot\theta\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2\left(\cot^2\theta+1\right) + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2\left(\frac{1}{\sin^2\theta}\right) + i\frac{\partial}{\partial\phi}\right]
\end{align*}

not sure how to procced from here, it's close to the required form but I do not know how to deal with the i\frac{\partial}{\partial\phi} term or I might have made mistakes...

Hope someone can help, thanks
 
Last edited by a moderator:
Physics news on Phys.org
Hi Tom, welcome to PF!

Tom_12 said:
<br /> =\hbar e^{-i\phi}(-∂/∂θ+icotθ∂/∂\phi) \times \hbar e^{+i\phi}(+∂/∂θ+icotθ∂/∂\phi) +(-i\hbar ∂/∂\phi)^2 + \hbar -i\hbar ∂/∂\phi<br />
<br /> =\hbar^2[(-∂/∂θ+icotθ∂/∂\phi)(∂/∂θ+icotθ∂/∂\phi)]-\hbar^2∂^2/∂\phi ^2-i\hbar^2∂/∂\phi <br />
In this step, you seem to have forgotten that you are dealing with operators. For instance, you can't just cancel out ##e^{-i\phi}## and ##e^{+i\phi}## because there is a ##∂/∂\phi## inbetween them.
 
DrClaude said:
Hi Tom, welcome to PF!In this step, you seem to have forgotten that you are dealing with operators. For instance, you can't just cancel out ##e^{-i\phi}## and ##e^{+i\phi}## because there is a ##\frac{\partial}{\partial\phi}## in between them.

Ok, I have no idea if what I'm doing is right, but would really appreciate some guidance here:
\begin{align*}
&= \hbar e^{-i\phi} \left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)
\hbar e^{+i\phi} \left(+\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) +
\left(-i\hbar\frac{\partial}{\partial\phi}\right)^2 -
i\hbar \frac{\partial}{\partial\phi} \\
&= \hbar \left(e^{-i\phi}\left(-\frac{\partial}{\partial\theta}\right) + ie^{-i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) \hbar \left(e^{+i\phi}\left(\frac{\partial}{\partial\theta}\right) + ie^{+i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) +\left(-i\hbar \frac{\partial}{\partial\phi}\right)^2 -i\hbar \frac{\partial}{\partial\phi} \\
&= -\hbar^2 \left[e^{-2i\phi} \left(\frac{\partial}{\partial\theta}\right)^2 - e^{-2i\phi}\cot\theta\frac{\partial}{\partial\theta} - \cot\theta\frac{\partial}{\partial\theta} + \cot^2\theta + \left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2 \left[e^{-2i\phi} \left(\frac{\partial}{\partial\theta}\right)^2 + e^{-2i\phi}\csc^2\theta + \csc^2\theta + \cot^2\theta +\left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right]
\end{align*}
I think I'm doing something where as this doesn't seem to be going anyway...
 
Last edited by a moderator:
Start by considering only ##\hat{L}_- \hat{L}_+##:
$$
\hat{L}_- \hat{L}_+ = \hbar^2 e^{-i \phi} \left( - \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)
$$
If you distribute ##\hat{L}_-## on ##\hat{L}_+##,
$$
\frac{\hat{L}_- \hat{L}_+}{\hbar^2} = - e^{-i \phi} \frac{\partial}{\partial \theta} e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right) + e^{-i \phi} i \cot \theta \frac{\partial}{\partial \phi} \left[ e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) \right]
$$
Then
$$
- e^{-i \phi} \frac{\partial}{\partial \theta} \left( e^{i \phi} \frac{\partial}{\partial \theta} \right) = - \frac{\partial^2}{\partial \theta^2}
$$
and
$$
- e^{-i \phi} \frac{\partial}{\partial \theta} \left( e^{i \phi} i \cot \theta \frac{\partial}{\partial \phi}\right) = i \csc^2 \theta \frac{\partial}{\partial \phi} - i \cot \theta \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}
$$
and so on.

It is a bit tedious, but just remember the "rule"
$$
\frac{\partial}{\partial x} f(x) g(y) = \frac{df}{dx} g(y) + f(x) g(y) \frac{\partial}{\partial x}
$$
 
I see, thank you very much
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top