Sho Kano
- 372
- 3
Homework Statement
A point moves on a curve \vec { r } with constant acceleration \vec { A }, initial velocity \vec { { V }_{ 0 } }, and initial position { \vec { { P }_{ 0 } } }
b. if \vec { A } and \vec { { V }_{ 0 } } are parallel, prove \vec { r } moves in a line
c. Assuming \vec { A } and \vec { { V }_{ 0 } } are not parallel, prove \vec { r } lies in a plane.
Homework Equations
The Attempt at a Solution
part a asked for the position function, so here it is:
\vec { r(t) } =\frac { 1 }{ 2 } \vec { A } { t }^{ 2 }+\vec { { V }_{ 0 } } t+{ \vec { { P }_{ 0 } } }
my attempt at part b:
\vec { A } must be parallel to \vec { { V }_{ 0 } }, so \vec { A } =a\vec { { V }_{ 0 } }, where a is some constant.
so \vec { r(t) } =\frac { 1 }{ 2 } \vec { a{ V }_{ 0 } } { t }^{ 2 }+\vec { { V }_{ 0 } } t+{ \vec { { P }_{ 0 } } }
?