Prove that α+β is linearly independent.

krozer
Messages
12
Reaction score
0

Homework Statement



Let F be a subset of the complex numbers. Let V be a vector space over F, and suppose α, β and γ are linearly independent vectors in V. Prove that (α+β), (β+γ) and (γ+α) are linearly independent.

Homework Equations



None.

The Attempt at a Solution



None.

Thanks for your time.
 
Physics news on Phys.org
What have you tried?
 
LCKurtz said:
What have you tried?

Given that α,β,ɣ are linearly independent then, if we have that

xα+yβ+zɣ=0 then x=y=z=0

Sup α+β=δ, β+γ=η and γ+α=ρ
How do I prove δ ,η and ρ are linearly independent?. But answering your question I'm trying to prove it with the Ʃ(cδ)=0 for all c in R.
 
krozer said:
Given that α,β,ɣ are linearly independent then, if we have that

xα+yβ+zɣ=0 then x=y=z=0

Sup α+β=δ, β+γ=η and γ+α=ρ
How do I prove δ ,η and ρ are linearly independent?.

So what happens if you have xδ+yη+zρ = 0? (Although why introduce new letters?)
 
LCKurtz said:
So what happens if you have xδ+yη+zρ = 0? (Although why introduce new letters?)

Ok, I think I know how to solve it.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top