Prove that a function is concave

  • Thread starter Thread starter blaah
  • Start date Start date
  • Tags Tags
    Concave Function
blaah
Messages
2
Reaction score
0

Homework Statement


f:R->R, c'
prove that f is concave iff f(x*)+(x-x*)f'(x*)>=f(x)


Homework Equations


assume the function is only once differentiable


The Attempt at a Solution


i have no idea how to approach this question...:confused:
 
Physics news on Phys.org
blaah said:

Homework Statement


f:R->R, c'
prove that f is concave iff f(x*)+(x-x*)f'(x*)>=f(x)


Homework Equations


assume the function is only once differentiable


The Attempt at a Solution


i have no idea how to approach this question...:confused:
Are x* and x any two values of x? Are there any restrictions on the values of x?

To prove your statement you need to prove two things:
  1. f is concave ==> f(x*) + (x - x*) f'(x*) >= f(x)
  2. f(x*) + (x - x*) f'(x*) >= f(x) ==> f is concave
For the first, what does it mean for a function to be concave?
For the second, one approach would be a proof by contradiction. Suppose that f(x*) + (x - x*) f'(x*) >= f(x) is true and that f is not concave. If you arrive at a contradiction, it means that your original assumption was incorrect, and therefore f must be concave.

Mark
 
for all x, x*

i know that for the function to be concave all the points on the tangent need to be on or below the function...but i doesn't help...i've been staring at the problems for days now, with no result...
 
Looks to me like the mean value theorem would be useful here.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top