Prove that a function is the quadratic form associated to

Andrés85
Messages
10
Reaction score
0

Homework Statement



Let G:R2\rightarrowR be a C2 function such that G(tx,ty)=t2G(x, y). Show that:

2G(x,y)=(x,y).HG(0,0).(x,y)t

The Attempt at a Solution



G is C2, so its Taylor expansion is:

G(x,y) = G(0,0) + \nablaG(0,0).(x,y) + \frac{1}{2}(x,y).HG(c).(x,y)t,

where c lies on the line segment that goes from (0,0) to (x,y).

Using that G(tx,ty)=t2G(x,y) I get that G(0,0) and the linear term equals 0.

The problem is that I have HG(c) in the quadratic term, but I need HG(0,0).
 
Physics news on Phys.org
If c is not (0,0) then what do you mean by "c" and "HG(c)"? You are taking the Taylor expansion at (0, 0), are you not?
 
I can't increase the degree of the Taylor polynomial because G is C2, so the second degree term is the remainder written in matrix notation.

HG(c) is the Hessian matrix of G evaluated at c, where c lies on the segment that goes from (0,0) to (x,y).
 
I solved the problem deriving two times the function f(t) = G(tx, ty). Thanks.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top