Prove that a function is the quadratic form associated to

Andrés85
Messages
10
Reaction score
0

Homework Statement



Let G:R2\rightarrowR be a C2 function such that G(tx,ty)=t2G(x, y). Show that:

2G(x,y)=(x,y).HG(0,0).(x,y)t

The Attempt at a Solution



G is C2, so its Taylor expansion is:

G(x,y) = G(0,0) + \nablaG(0,0).(x,y) + \frac{1}{2}(x,y).HG(c).(x,y)t,

where c lies on the line segment that goes from (0,0) to (x,y).

Using that G(tx,ty)=t2G(x,y) I get that G(0,0) and the linear term equals 0.

The problem is that I have HG(c) in the quadratic term, but I need HG(0,0).
 
Physics news on Phys.org
If c is not (0,0) then what do you mean by "c" and "HG(c)"? You are taking the Taylor expansion at (0, 0), are you not?
 
I can't increase the degree of the Taylor polynomial because G is C2, so the second degree term is the remainder written in matrix notation.

HG(c) is the Hessian matrix of G evaluated at c, where c lies on the segment that goes from (0,0) to (x,y).
 
I solved the problem deriving two times the function f(t) = G(tx, ty). Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top