if B(x,y) is an open ball with center (x,y) and radius r, i show that if (a,b) belongs to the ball B, then (a,b) belongs to the set, so a^2 + b^2 < 7
|(a,b)| = |(a,b) - (x,y) + (x,y)| = |(a-x, b-y) + (x,y)| ≤ |(a-x, b-y)| + |(x,y)|
|(a-x, b-y)| < r, so
|(a-x, b-y)| + |(x,y)| < r + |(x,y)|
r = √7 - |(x,y)|, so
r + |(x,y)| = √7 - |(x,y)| + |(x,y)| = √7
Finally, I get
|(a,b)| < √7
√(a^2 + b^2) < √7
a^2 + b^2 < 7
and that proves that if (a,b) is in the ball then (a,b) is in the set x^2 + y^2 < 7