3029298
- 56
- 0
Homework Statement
Prove that the transformation law
\Gamma^{\sigma '}_{\lambda '\rho '}=\frac{\partial x^\nu}{\partial x^{\lambda '}}\frac{\partial x^\rho}{\partial x^{\rho '}}\frac{\partial x^{\sigma '}}{\partial x^{\mu}}\Gamma^{\mu}_{\nu\rho}+\frac{\partial x^{\sigma '}}{\partial x^{\mu}}\frac{\partial^2 x^\mu}{\partial x^{\lambda '}\partial x^{\rho '}}
is equivalent to
\Gamma^{\sigma '}_{\lambda '\rho '}=\frac{\partial x^\lambda}{\partial x^{\lambda '}}\frac{\partial x^\rho}{\partial x^{\rho '}}\frac{\partial x^{\sigma '}}{\partial x^{\sigma}}\Gamma^{\sigma}_{\lambda\rho}-\frac{ \partial x^\mu}{\partial x^{\lambda '}}\frac{\partial x^{\lambda}}{\partial x^{\rho '}}\frac{\partial^2 x^{\sigma '}}{\partial x^{\mu}\partial x^{\lambda}}
The Attempt at a Solution
The first term is easy, just relabel the dummy indices \nu \rightarrow \lambda and \mu \rightarrow \sigma. But for the rest of the problem, I have no clue what to do.
Last edited: