Proving 2nd Order Differential Eqns

TannY
Messages
2
Reaction score
0

Homework Statement


If y = (3x)/e^2x, find the value of x when d^2y/dx^2 = 0


Homework Equations


I'll just abbv d^2y/dx^2 as d2ydx2

The Attempt at a Solution


I kept getting stuck at:
d2ydx2 = 6/e^2
When d2ydx2 = 0,

6/e^2 = 0
6 = e^2

Then where's my x?? :confused: :confused:

P.S: i have serious issues with differentiation =.=
 
Physics news on Phys.org
y = 3x*e^(-2x)
y' = 3e^(-2x) - 6xe^(-2x)
y'' = -6e^(-2x) - 6e^(-2x) + 12xe^(-2x) = 0
-12e^(-2x) + 12xe^(-2x) = 0
12xe^(-2x) = 12e^(-2x)
x = 1

Differentiated using the chain rule (for exponentials) and product rule.
 
thanx! ^^
i thought that (e^2x)squared = (e^4x) lol :biggrin:
 
TannY said:
thanx! ^^
i thought that (e^2x)squared = (e^4x) lol :biggrin:

It is.

Filler Filler Filler.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top