Proving [A,B]=0 for Simultaneous Eigenkets of A and B

  • Thread starter Thread starter Bill Foster
  • Start date Start date
Bill Foster
Messages
334
Reaction score
0

Homework Statement



Let A and B be observables. Suppose the simultaneous eigenkets of A and B \left{|a_n,b_n\rangle\right} form a complete orthonormal set of base kets. Can we always conclude that [A,B]=0 ? If “yes”, prove it. If “no”, give a counterexample.

The Attempt at a Solution



One solution is given as follows:

\sum_m |a_m,b_m\rangle\langle a_m,b_m|=1
\sum_n |a_n,b_n\rangle\langle a_n,b_n|=1

\left[A,B\right]=AB-BA
=\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(AB-BA\right)\sum_n |a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(AB-BA\right)|a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(AB|a_n,b_n\rangle\langle a_n,b_n|-BA|a_n,b_n\rangle\langle a_n,b_n|\right)
=\sum_n\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(a_n b_n|a_n,b_n\rangle\langle a_n,b_n|-b_n a_n|a_n,b_n\rangle\langle a_n,b_n|\right)
=0

My question is this: how is it known that the following is true?

AB|a_n,b_n\rangle = a_n b_n|a_n,b_n\rangle
BA|a_n,b_n\rangle = b_n a_n|a_n,b_n\rangle

And since it is true, why can the following be an equally valid solution?

\left[A,B\right]=\left(AB-BA\right)\sum_n |a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\left(AB-BA\right)|a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\left(AB|a_n,b_n\rangle\langle a_n,b_n|-BA|a_n,b_n\rangle\langle a_n,b_n|\right)
=\sum_n\left(a_n b_n|a_n,b_n\rangle\langle a_n,b_n|-b_n a_n|a_n,b_n\rangle\langle a_n,b_n|\right)
=0
 
Last edited:
Physics news on Phys.org
By definition |a_n,b_n\rangle are eigenkets of A and B with eigenvalues an and bn:

A|a_n,b_n\rangle = a_n|a_n,b_n\rangle
B|a_n,b_n\rangle = b_n|a_n,b_n\rangle

Using the previous equations and linearity of A and B you have:

BA|a_n,b_n\rangle = Ba_n|a_n,b_n\rangle = a_nB|a_n,b_n\rangle = a_nb_n|a_n,b_n\rangle
AB|a_n,b_n\rangle = Ab_n|a_n,b_n\rangle = b_nA|a_n,b_n\rangle = b_na_n|a_n,b_n\rangle
 
Bill Foster said:
And since it is true, why can the following be an equally valid solution?

\left[A,B\right]=\left(AB-BA\right)\sum_n |a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\left(AB-BA\right)|a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\left(AB|a_n,b_n\rangle\langle a_n,b_n|-BA|a_n,b_n\rangle\langle a_n,b_n|\right)
=\sum_n\left(a_n b_n|a_n,b_n\rangle\langle a_n,b_n|-b_n a_n|a_n,b_n\rangle\langle a_n,b_n|\right)
=0

If a_n and b_n are both numbers, can't we say (inserting this between the last two lines above)

[A,B]=\sum_n\left(a_n b_n-b_na_n\right)|a_n,b_n\rangle\langle a_n,b_n|

that is, factor out |a_n,b_n\rangle\langle a_n,b_n|? Then from this, since they are numbers, a_nb_n-b_na_n=a_nb_n-a_nb_n=0
 
Yep. Looks like this one is done, too.

Danke.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...

Similar threads

Replies
1
Views
2K
Replies
9
Views
1K
Replies
4
Views
1K
Replies
59
Views
11K
Replies
7
Views
2K
Replies
4
Views
3K
Replies
1
Views
1K
Replies
3
Views
2K
Back
Top