Bill Foster
- 334
- 0
Homework Statement
Let A and B be observables. Suppose the simultaneous eigenkets of A and B \left{|a_n,b_n\rangle\right} form a complete orthonormal set of base kets. Can we always conclude that [A,B]=0 ? If “yes”, prove it. If “no”, give a counterexample.
The Attempt at a Solution
One solution is given as follows:
\sum_m |a_m,b_m\rangle\langle a_m,b_m|=1
\sum_n |a_n,b_n\rangle\langle a_n,b_n|=1
\left[A,B\right]=AB-BA
=\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(AB-BA\right)\sum_n |a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(AB-BA\right)|a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(AB|a_n,b_n\rangle\langle a_n,b_n|-BA|a_n,b_n\rangle\langle a_n,b_n|\right)
=\sum_n\sum_m |a_m,b_m\rangle\langle a_m,b_m|\left(a_n b_n|a_n,b_n\rangle\langle a_n,b_n|-b_n a_n|a_n,b_n\rangle\langle a_n,b_n|\right)
=0
My question is this: how is it known that the following is true?
AB|a_n,b_n\rangle = a_n b_n|a_n,b_n\rangle
BA|a_n,b_n\rangle = b_n a_n|a_n,b_n\rangle
And since it is true, why can the following be an equally valid solution?
\left[A,B\right]=\left(AB-BA\right)\sum_n |a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\left(AB-BA\right)|a_n,b_n\rangle\langle a_n,b_n|
=\sum_n\left(AB|a_n,b_n\rangle\langle a_n,b_n|-BA|a_n,b_n\rangle\langle a_n,b_n|\right)
=\sum_n\left(a_n b_n|a_n,b_n\rangle\langle a_n,b_n|-b_n a_n|a_n,b_n\rangle\langle a_n,b_n|\right)
=0
Last edited: