Proving a group G is isomorphic to D_10

  • Thread starter Thread starter alex07966
  • Start date Start date
  • Tags Tags
    Group
alex07966
Messages
5
Reaction score
0
Question: Let G be a non-abelian group such that the size of G is 10. Prove G is isomorphic to D_10.

I have started by saying the elements of G have order 1,2,5 or 10. And then showing how there are no elements of order 10 as that would make it abelian. I then show there is an element x of order 5 and an element y of order 2.
I then show G = {e, x, x^2, x^3, x^4, y, xy, (x^2)y, (x^3)y, (x^4)y} using right cosets.
NOW... i need to find what yx is equal to:
I then show that yx must be equal to either (x^2)y, (x^3)y or (x^4)y.
I think i then need to show BY CONTRADICTION that yx is not equal to the first two elements and therefore must be equal to (x^4)y. I can't reach a contradiction though! please help.

I can then say this group G has the same equations for working out the multiplication table of D_10 and is therefore isomorphic to D_10.
 
Physics news on Phys.org
Here's one way. Write yxy^{-1}=x^m.

Try to obtain x=y^2 xy^{-2}=(x^m)^m and thus m^2 is congruent to 1 modulo 5.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top