Proving a set of derivatives to be a subset of real functions

jimmybonkers
Messages
2
Reaction score
0
let C0 be the set of continuous functions f : R -> R. For n >= 1, let Cn denote theset of functions f : R -> R such that f is differentiable and such that f' is contained in C(n-1). (Therefore Cn is the set of functions whose derivatives f',f'',f''',...,f^(n) up to the nth order exist and are continuous.) Prove by induction that Cn is a subspace of V where V is the set of all functions f : R -> R.

There are three properties that Cn must satisfy to be a subspace,
1.) it must contain the zero vector of V
2.) It must be closed under vector addition
3.) it must be closed under scalar multiplication

I am not sure which of these properties i must perform induction on (obviously not 1.) ) or should it be both 2.) and 3.)..?
I would greatly appreciate it if someone could give me a hint for what the inductive step should be..?

cheers,

James
 
Physics news on Phys.org
Obviosuly Cn is a subset of V, so you just need to prove that it's a vector space by showing that the conditions for a vector space are satisfied. You don't need to do any induction.
 
I am specifically asked to prove it by induction
 
You'll need induction to show that the (f+g)^(n) = f^(n) + g^(n) and that (cf)^(n) = cf^(n) (which is what you need to prove to show that C^n is closed under addition and scalar multiplication). The inductive step would simply be using the linearity of derivation.
 
jimmybonkers said:
There are three properties that Cn must satisfy to be a subspace,
1.) it must contain the zero vector of V
2.) It must be closed under vector addition
3.) it must be closed under scalar multiplication

I am not sure which of these properties i must perform induction on (obviously not 1.) ) or should it be both 2.) and 3.)..?
I would greatly appreciate it if someone could give me a hint for what the inductive step should be..?
3 implies 1. And 2 and 3 can be combined into "closed under linear combinations".

(af+bg)^{(m+1)}=((af+bg)^{(m)})' =\dots
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top