Proving a vector inequality in R^n

  • Thread starter Thread starter king vitamin
  • Start date Start date
  • Tags Tags
    Inequality Vector
king vitamin
Science Advisor
Gold Member
Messages
486
Reaction score
245

Homework Statement


In R^n show that:

\Vert\overrightarrow{x - y}\Vert \Vert\overrightarrow{x+y}\Vert \leq \Vert\overrightarrow{x}\Vert^{2} + \Vert\overrightarrow{y}\Vert^{2}


Homework Equations



My main attempts have either been from the Triangle Inequality:
\Vert\overrightarrow{x+y}\Vert \leq \Vert\overrightarrow{x}\Vert + \Vert\overrightarrow{y}\Vert

Or from attempts to implement the idea:
sqrt(a^2 + b^2) <= |a| + |b|

The Attempt at a Solution


Everytime I attempt to do this algebraically, the product on the left becomes a distributive catastrophe and I can't get anything sensible out of it, and attempting to square both sides to get rid of the square root just results in the same catastrophe on the RHS. I tried to represent the left hand side as a dot product but that involved cos(theta) which just complicates the problem. If anyone could point me in the right direction it would be appreciated.
 
Physics news on Phys.org
The triangle equality is all you need. Just square both sides and you're almost there already.
 
I feel more stuck than before! Squaring the Triangle inequality obtains:

<br /> \Vert\overrightarrow{x+y}\Vert^{2} \leq \Vert\overrightarrow{x}\Vert^{2} + \Vert\overrightarrow{y}\Vert^{2} + 2\Vert\overrightarrow{x}\Vert\Vert\overrightarrow{y}\Vert

So do I now need to show that:

<br /> \Vert\overrightarrow{x - y}\Vert \Vert\overrightarrow{x+y}\Vert \leq \Vert\overrightarrow{x+y}\Vert^{2} - 2\Vert\overrightarrow{x}\Vert\Vert\overrightarrow{y}\Vert
? EDIT: I found a counterexample to this equation, so mark it off the list

Even more frustrating is this easy result from the Triangle Inequality:

<br /> \Vert\overrightarrow{x+y}\Vert\Vert\overrightarrow{x-y}\Vert \leq \Vert\overrightarrow{x}\Vert^{2} + \Vert\overrightarrow{y}\Vert^{2} + 2\Vert\overrightarrow{x}\Vert\Vert\overrightarrow{y}\Vert

I just can't get rid of the 2xy term!
 
Last edited:
Oohhh, now I see, there is a minus sign in one of them.
Then I think the triangle inequality doesn't help you much... sorry.

I did get it to work (more or less) through the dot product. You have to think about cos(theta) a bit, but eventually you will be able to use that a - b <= a if b >= 0 and sqrt(a^2 + b^2) <= |a| + |b| to get where you want.
I hope that's a better hint and you'll get there now.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top