A Proving Cartan Subalgebra $\mathbb{K} H$ is Self-Normalizer

HDB1
Messages
77
Reaction score
7
TL;DR Summary
Cartan subalgebra
Please, How we can solve this:

$$
\mathfrak{h}=\mathbb{K} H \text { is a Cartan subalgebra of } \mathfrak{s l}_2 \text {. }
$$

it is abelian, but how we can prove it is self-normalizer, please:Dear @fresh_42 , if you could help, :heart: 🥹
 
Physics news on Phys.org
As always: start with what we have.

The normalizer of ##H\in \mathfrak{sl}(2)## is given as ##\{X\in \mathfrak{sl}(2)\,|\,[X,\mathbb{K}H]\subseteq \mathbb{K}H\}.## Now set ##X=eE+hH+fF## and calculate
$$
[X,H]=[eE+hH+fF,H] \in \mathbb{K}\cdot H
$$
This gives you conditions for ##e## and ##f## and so for the form of ##X.##
 
fresh_42 said:
As always: start with what we have.

The normalizer of ##H\in \mathfrak{sl}(2)## is given as ##\{X\in \mathfrak{sl}(2)\,|\,[X,\mathbb{K}H]\subseteq \mathbb{K}H\}.## Now set ##X=eE+hH+fF## and calculate
$$
[X,H]=[eE+hH+fF,H] \in \mathbb{K}\cdot H
$$
This gives you conditions for ##e## and ##f## and so for the form of ##X.##
Thank you so much @fresh_42, please, is ##\mathbb{K}{H}## is the only cartan algebra in ##\mathfrak{sl}{2}##, and does the characteristic of the field matter here?
I wonder why we chose ##\mathbb{K}{H}##? Thank you in advance, I have to find other words to thank you, :heart:
 
HDB1 said:
Thank you so much @fresh_42, please, is ##\mathbb{K}{H}## is the only cartan algebra in ##\mathfrak{sl}{2}##,...
Yes. It is the only CSA ( ... according to that basis; a different basis means a different representation. But ##E,H,F## is the standard basis, and ##\mathfrak{K}H## the standard CSA.
HDB1 said:
... and does the characteristic of the field matter here?
I don't think so, but as always: keep away from characteristic ##2##. I'm not quite sure how they are defined over characteristic ##2## fields.

HDB1 said:
I wonder why we chose ##\mathbb{K}{H}##?
##\mathbb{K}H## is only the linear span, hence the entire subalgebra. We do not choose ##H##. The procedure is as follows:

a) ##\mathfrak{sl}(2)## is not nilpotent, so it's no CSA of itself.
b) ##\mathfrak{sl}(2)## posseses no two-dimensional nilpotent subalgebras. Its two-dimensional subalgebras are solvable, but not nilpotent.
c) So any CSA of ##\mathfrak{sl}(2)## has to be one-dimensional.
d) ##\mathfrak{K}\cdot H## is a one-dimensional CSA of ##\mathfrak{sl}(2).##

That's fine since it suffices for all our purposes. You could assume another one-dimensional CSA of ##\mathfrak{sl}(2),## say ##\mathfrak{K}\cdot (eE+fF+hH).## Maybe there is a solution with ##e\neq 0## or ##f\neq 0.## You could calculate whether this is possible or not, but with regard to chapter 15.3, it doesn't really make sense to search for another one if the first one, ##\mathbb{K}\cdot H##, is so convenient. It will be just another basis in the end that has a more complicated multiplication table.
 
Last edited by a moderator:
Dear, @fresh_42 , Thank for the clarification, but , please, I could not read the last comment, Thanks in advance, :heart:
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
15
Views
3K
Replies
19
Views
3K
Replies
4
Views
2K
Replies
3
Views
440
Replies
19
Views
3K
Replies
2
Views
2K
Replies
7
Views
2K
Back
Top