Proving Convergence or Divergence of (k^1/2)*(ln k )/(k^3 +1) - Help Needed

  • Thread starter Thread starter raycao88124
  • Start date Start date
raycao88124
Messages
3
Reaction score
0
(k^1/2)*(ln k )/(k^3 +1)
how to prove it con or div?
i tried comparison, limit comparison, etc... but just don't know how to prove it..
please help...
 
Physics news on Phys.org
oh, from k=1 to +inf
 
Hint: \ln{k} < k. What comparisons have you tried? Try some more.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top