Proving Determinants: Int. A & A^-1, Determine detA & detA-1

  • Thread starter Thread starter tatianaiistb
  • Start date Start date
  • Tags Tags
    Determinants
tatianaiistb
Messages
47
Reaction score
0

Homework Statement



If the entries of A and A^-1 are all integers, how do you know that both determinants are 1 or -1?

Homework Equations





The Attempt at a Solution



I know that
1 = det I = detAA-1=detA * detA-1= detA*(1/detA) = 1
Not sure how we get to - or the role integers play in it.

Thanks for your help!
 
Physics news on Phys.org
So you have just shown that, if A = A-1, then det A = 1 / det A.
Now consider the values that det A can take if all entries of A are integers.
 
Thanks! I was making the problem harder than it is!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top