Proving G is a Group: Jim's A-Level P6 Exam Struggle

Jummeh
Messages
5
Reaction score
0
I was revising for my ALevel P6 exam the other day and I came up against a very tough question...

G is a multiplicative froup with identity element e, and a is a fixed element of G for which axa = x^-1 for all elements x belonging to G. Prove that...

i/ a = a^-1

ii/ ax = (ax)^-1 for all x belong to G //cant find the little symbol

iii/ x = x^-1 for all x belong to G

iv/ xy = yx for all x, y belong to G
I can do parts i and ii

axa = x^-1, let x = e
a^2 = e
a = a^-1

for part ii

axa = x^-1
axax = e
axax(ax)^-1 = (ax)^-1 //ax and (ax)^-1 will cancel
ax = (ax)^-1

but for part iii and iv I seem do always go around in circles or i end up with something obvious like x = x. Unfortunately there aren't any answers to this question.

ps: I hope this was the correct place to post this, i had a look in the homework help section but it was mostly about physics. :s
And i have already taken the exam now but the question is kinda bugging me.

Thanks in advance for any help

Jim
 
Last edited by a moderator:
Mathematics news on Phys.org
The result of part two is the key to solving answer three. Maybe if I slightly restate what you've proven, the way to go might become apparent:

Theorem: for all y, (ay) = (ay)^-1

Goal: prove x=x^-1 for all x


And result 4 follows from a few applications of rule 3 and the identity:
(xy)^-1 = (y^-1)(x^-1)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top