Mmmm
- 60
- 0
Homework Statement
Prove that the proper length of geodesic between two points is unchanged to first order by small changes in the curve that do not change its endpoints.
Homework Equations
Length of curve = \int ^{\lambda_{2}}_{\lambda_{1}}\left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}\right|^\frac{1}{2}d\lambda
where g_{\alpha\beta} is the metric for the particular coordinate system, and
\frac{dx^\alpha}{d\lambda}= U^\alpha is the gradient of the curve.
On a geodesic, g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda} is constant.
The Attempt at a Solution
The equation of the curve is
x^\alpha = x^\alpha(\lambda)
For a small change in the curve, the equation becomes
x^\alpha = x^\alpha(\lambda) + \delta x^\alpha(\lambda)
where
\delta x^\alpha(\lambda_{2})=\delta x^\alpha(\lambda_{1}) = 0
to ensure that the ends of the curve are unchanged.
So
Length of curve = \int ^{\lambda_{2}}_{\lambda_{1}}\left|g_{\alpha\beta}\frac{d}{d\lambda}(x^\alpha + \delta x^\alpha)\frac{d}{d\lambda}(x^\alpha + \delta x^\alpha)\right|^\frac{1}{2}d\lambda
Multiplying out:
=\int ^{\lambda_{2}}_{\lambda_{1}}\left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}+g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}\right|^\frac{1}{2}d\lambda
Expanding to first order:
\approx \int ^{\lambda_{2}}_{\lambda_{1}}\left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}\right|^\frac{1}{2}+\frac{1}{2}\left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}\right|^\frac{-1}{2} \left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}\right|d\lambda
The first term here is the length of the original curve again so the second term is the change in length to first order given a small change in the curve. I must prove that this is 0.
\Delta l = \int ^{\lambda_{2}}_{\lambda_{1}}\frac{1}{2}\left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}\right|^\frac{-1}{2} \left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}\right|d\lambda
Now on a geodesic g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda} is constant, so i will just call this factor C.
so
\Delta l = C \int ^{\lambda_{2}}_{\lambda_{1}}\frac{1}{2}\left|g_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}+g_{\alpha\beta}\frac{d\delta x^\alpha}{d\lambda}\frac{d\delta x^\beta}{d\lambda}\right|d\lambda
Rename some indices to get a common factor of \frac{d\delta x^\gamma}{d\lambda}:
= C \int ^{\lambda_{2}}_{\lambda_{1}}\frac{1}{2}\left|g_{\alpha\gamma}\frac{dx^\alpha}{d\lambda}\frac{d\delta x^\gamma}{d\lambda}+g_{\gamma\beta}\frac{d\delta x^\gamma}{d\lambda}\frac{dx^\beta}{d\lambda}+g_{\alpha\gamma}\frac{d\delta x^\alpha}{d\lambda}\frac{d\delta x^\gamma}{d\lambda}\right|d\lambda
Factorise and rename more indices:
= C \int ^{\lambda_{2}}_{\lambda_{1}}\frac{1}{2}\left|\frac{d\delta x^\gamma}{d\lambda}\right|\left|g_{\alpha\gamma}\frac{d x^\alpha}{d\lambda}+g_{\gamma\alpha}\frac{dx^\alpha}{d\lambda}+g_{\alpha\gamma}\frac{d\delta x^\alpha}{d\lambda}\right|d\lambda
use symmetry of g to make first two terms equal:
= C \int ^{\lambda_{2}}_{\lambda_{1}}\frac{1}{2}\left|\frac{d\delta x^\gamma}{d\lambda}\right|\left| 2 g_{\alpha\gamma}\frac{d x^\alpha}{d\lambda}+g_{\alpha\gamma}\frac{d\delta x^\alpha}{d\lambda}\right|d\lambda
Now integrate by parts:
= C \left[ \frac{1}{2}\left|{\delta x^\gamma}\left( 2 g_{\alpha\gamma}\frac{d x^\alpha}{d\lambda}+g_{\alpha\gamma}\frac{d\delta x^\alpha}{d\lambda}\right) \right| \right] ^{\lambda_{2}}_{\lambda_{1}} - C \int ^{\lambda_{2}}_{\lambda_{1}}\frac{1}{2}\left|\delta x^\gamma}\left( 2 \frac{d}{d \lambda} \left( g_{\alpha\gamma} U^\alpha \right) + \frac{d}{d \lambda} \left( g_{\alpha\gamma} \frac{d \delta x^\alpha}{d\lambda} \right) \right)\right|d\lambda
The first term vanishes as \delta x^\alpha(\lambda_{2})=\delta x^\alpha(\lambda_{1}) = 0
= C \int ^{\lambda_{2}}_{\lambda_{1}} \left|\delta x^\gamma}\left[ - \frac{d}{d \lambda} \left( g_{\alpha\gamma} U^\alpha \right) - \frac{1}{2} \frac{d}{d \lambda} \left( g_{\alpha\gamma} \frac{d \delta x^\alpha}{d\lambda} \right) \right]\right|d\lambda
This is where I get a bit stuck. The expression in square brackets should come out as the geodesic equation and it is nearly there. The problem is the second term, it should be
\frac{1}{2}g_{\alpha \beta , \gamma} U^\alpha U^\beta
(which I got from the answer in the back of the book)
to give
\Delta l = C \int ^{\lambda_{2}}_{\lambda_{1}} \left|\delta x^\gamma}\left[ - \frac{d}{d \lambda} \left( g_{\alpha\gamma} U^\alpha \right) + \frac{1}{2}g_{\alpha \beta , \gamma} U^\alpha U^\beta \right]\right|d\lambda
Then, indeed with a bit of indices tweaking you do get the geodesic equation and everything vanishes.
I have an extra \frac{d \delta x^\alpha}{d\lambda} and I just have no idea how to get rid of it.