Proving Hyperbola for Quadratic Equation (X^T)AX = k

blackblanx
Messages
16
Reaction score
0

Homework Statement



Let A be a 2x2 symmetric matrix and x be a scalar. Prove that the graph of the quadratic equation (X^T)AX = k is hyperbola if k is non zero and det(A) less than zero

(T stands for transpose

Homework Equations



not were to begin
 
Physics news on Phys.org
Well, begin by writing it out!
Let X= <x, y> and
A= \begin{bmatrix} a &amp; b \\ c &amp; d\end{bmatrix}.

Then
X^TAX= \begin{bmatrix}x &amp; y\end{bmatrix}\begin{bmatrix}a &amp; b \\ c &amp; d\end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix}=ax^2+ cxy+ bxy+ dy^2= ax^2+ (b+ c)xy+ dy^2

Now, under what conditions on a, b, c, d is ax^2+ (b+ c)xy+ dy^2 a hyperbola?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top