Proving Inequality: 1/2^k+1 + 1/2^k+2 + ... + 1/2^(k+1) > 1/2

  • Thread starter Thread starter Unassuming
  • Start date Start date
  • Tags Tags
    Inequality
Unassuming
Messages
165
Reaction score
0

Homework Statement



Show that

\frac{1}{2^k+1}+\frac{1}{2^k+2}+...+\frac{1}{2^{k+1}}>\frac{1}{2}

Homework Equations





The Attempt at a Solution



I cannot figure this out. It is part of a larger proof that I am trying to understand. Any help would be appreciated!
 
Physics news on Phys.org
Each of the terms \frac{1}{2^k+1},... \frac{1}{2^{k+1}-1} is larger than \frac{1}{2^{k+1}}

There are 2*2^k - 2^k = 2^k terms so the whole sum is certainly larger than 1/2:

\frac{1}{2^k+1}+...+ \frac{1}{2^{k+1}} > \frac{2^k}{2^{k+1}} = \frac{1}{2}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top