Proving Linear Algebra Statement: A and B in Mn(R) with B invertible

annoymage
Messages
360
Reaction score
0

Homework Statement



If A and B \in Mn(R) and B is invertible

show that

l A-cI l = l B-1AB-cI l

Homework Equations



N/A

The Attempt at a Solution



i've no idea how to prove this. can give me any clue?

l AI-cI l = l ABB-1-cI l

am i in the right way?
 
Physics news on Phys.org
recall that for square matrices

<br /> <br /> det(AB) = det(A)det(B)<br /> <br />

and for an invertible square matrix,

<br /> <br /> det(B^{-1}) = det(B)^{-1}<br /> <br />

How can you apply these?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top