Proving me ? partial orders :hasse diagrams

  • Thread starter Thread starter rami070
  • Start date Start date
  • Tags Tags
    Diagrams Partial
rami070
Messages
4
Reaction score
0
partial orders :hasse diagrams
theorem : if [A,R] is poset and A is finite , then A has both a maximal and a minimal element

A={a1,a2,a3...an}

but i know prove it is maximal , but i not know how i prove it is minimal ?




please answer ?
 
Physics news on Phys.org
How did you prove that there is a maximal element?
 
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/s320x320/400327_199078300188664_100002594878940_372880_1793624919_n.jpg
 
Last edited by a moderator:
see it i prove
 
see it is proved
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top