Proving Normal Subgroup of S4 in Alternative Ways

msd213
Messages
24
Reaction score
0
How would one go about proving a particular subset of S4 is a normal subgroup of S4? Since S4 has 24 elements, I'm wondering if there is any other way to prove this other than a brute force method.
 
Physics news on Phys.org
you can use a certain (obvious) implication of the Lagrange theorem for groups to thin out the workload; and you can also use the fact that any permutation is a product of disjoint transpositions to further simplify notation... of course if by S4 you mean S_4 the symmetry group.

so yes there is a way to find the normal subgroups by other means than brute force.:smile:
 
tauon said:
you can use a certain (obvious) implication of the Lagrange theorem for groups to thin out the workload; and you can also use the fact that any permutation is a product of disjoint transpositions to further simplify notation... of course if by S4 you mean S_4 the symmetry group.

so yes there is a way to find the normal subgroups by other means than brute force.:smile:

Yes, the symmetry group.

I'm not sure I entirely know what you mean with Lagrange's theorem. I'm not sure how that exactly helps.

And breaking up each permutation into transpositions, won't that just make the brute force easier?
 
tauon said:
you can use a certain (obvious) implication of the Lagrange theorem for groups to thin out the workload; and you can also use the fact that any permutation is a product of disjoint transpositions to further simplify notation... of course if by S4 you mean S_4 the symmetry group.

so yes there is a way to find the normal subgroups by other means than brute force.:smile:

Yes, the symmetry group.

I'm not sure I entirely know what you mean with Lagrange's theorem. I'm not sure how that exactly helps.

And breaking up each permutation into transpositions, won't that just make the brute force easier?
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top