Proving sin(x) $\leq$ x Without Using cos(x)

  • Thread starter Thread starter icantadd
  • Start date Start date
icantadd
Messages
109
Reaction score
0
I want to prove that sin(x) is continuous at some x_0 without using the fact that cos(x) is continuous. I get that this |sin(x) - sin(x_0)| = |2*sin(x-x_0)/2cos(x-x_0)/2| and then because cos(g(x)) is bounded above by 1
that the above is <= 2|sin((x-x_0)/2)| Looking at a triangle where sine is the vertical distance to x-x_0 it is easy to see that sin(x) <= x for all x, and if I have this, I have that the above is <= |x-x_0| which is strictly less than epsilon which equals delta, and the proof is done. But I don't know how to prove that sin(x) <= x. Any ideas?
 
Physics news on Phys.org
Look at a point on the unit circle at an angle x from the x-axis. sin(x) is the vertical distance of the point from the x-axis and x is the length of the arc between that point and the x-axis.
 
How you prove sine is continuous depends strongly on how exactly you define sine! Dick's suggestion is based on the most common definition: sin(t) is the y-coordinate of the point at distance t around the unit circle from (1, 0).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top