Proving Subspace Relation: lp and lq Sequences

  • Thread starter Thread starter hedipaldi
  • Start date Start date
  • Tags Tags
    Sequence Space
hedipaldi
Messages
209
Reaction score
0

Homework Statement


how to prove that the sequences space lp is subspace of lq for p smaller than q?


Homework Equations





The Attempt at a Solution


I try to imply holder inequality but meanwile unsuccesfully
 
Physics news on Phys.org
Hint: if ##0 < x < 1## and ##0 < p < q##, then ##x^q < x^p##.
 
Yes,so simple. thank you very much.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top