prhzn
- 8
- 0
Homework Statement
Prove that \kappa(A^TA) = \kappa(A)^2 where \kappa(A) = \left\|A\right\|\left\|A^{-1}\right\|, or in a more general case, \kappa(A) = \left\|A\right\|\left\|A^+\right\|, where A^+ is the pseudoinverse of A\in\mathbb{R}^{m\times n}
The Attempt at a Solution
My initial guess is to use Cauchy-Schwarz to separate the products of the norms when replacing A with A^TA, giving me
\kappa(A^TA) = \left\|A^TA\right\|\left\|(A^TA)^+\right\| \leq \left\|A^T\right\|\left\|A\right\|\left\|A^+\right\|\left\|\left(A^T\right)^+\right\| = \underbrace{\left\|A\right\|\left\|A^+\right\|}_{\kappa(A)}\underbrace{\left\|A^T\right\|\left\|\left(A^T\right)^+\right\|}_{\kappa(A^T)}
which gives \kappa(A)^2 as \kappa(A) = \kappa(A^T).
But I'm not sure if I can do it this simple; any inputs?
Thanks in advance