kcirick
- 54
- 0
Question:
If g(p) can be Taylor expanded in polynomials, then prove that:
\left[x, g\left(p\right)\right] = i\hbar \frac{dg}{dp}
To start, I multiply the wave function \Psi and expand the commutator:
\left( xg\left(p\right)-g\left(p\right)x \right)\Psi
then expand g(p) using Taylor:
x\left(g\left(a\right) + g'\left(a\right)\left(p-a\right)\right)\Psi + \left(g\left(a\right) + g'\left(a\right)\left(p-a\right)\right)x\Psi
Then I'm stuck... I'm nowhere near getting i\hbar or \frac{dg}{dp}
Any help would be appreciated. Thank you!
-Rick
If g(p) can be Taylor expanded in polynomials, then prove that:
\left[x, g\left(p\right)\right] = i\hbar \frac{dg}{dp}
To start, I multiply the wave function \Psi and expand the commutator:
\left( xg\left(p\right)-g\left(p\right)x \right)\Psi
then expand g(p) using Taylor:
x\left(g\left(a\right) + g'\left(a\right)\left(p-a\right)\right)\Psi + \left(g\left(a\right) + g'\left(a\right)\left(p-a\right)\right)x\Psi
Then I'm stuck... I'm nowhere near getting i\hbar or \frac{dg}{dp}
Any help would be appreciated. Thank you!
-Rick