Dick said:
Yes. Your axiom 3 is is using multiplicative notation instead additive. I'd write it as ∀a∈G ∃(-a)∈G : a+(-a)=0. And for 2 substitute 0 for e. So sure, since a+(-a)=0, an inverse -(-a) of (-a) is a. That's almost Q.E.D. If you want to go whole hog on this your axioms don't explicitly state that the identity or inverses are unique. I'm not sure if you are expected to prove that or not.
Hello, I made the corrections you mentioned, and based on the theory of abelian group, I try to prove that the identity element and inverse element are unique. I think that maybe i got it.
-------------------------------------------------------------------------------------
I have a group G, which has an internal composition law ∘, satisfies the following Axioms.
A1 a+(b+c)=(a+b)+c, ∀a,b,c∈G
A2 ∃0∈G : 0+a=a+0=a
A3 ∀a∈G, ∃(-a)∈G : a+(-a)=(-a)+a=0
..Theorem 1 - Identity element, in G, is unique.
Proof: If 0 and f are two identity elements of G. Then:
0=0+f (A2)
0=f (A2)
..Theorem 2 - Inverse element, in G, are unique
Proof: If (-a) and (-a)′ are two inverses of an element a of G. Then:
(-a)=(-a)+0 (A2)
(-a)=(-a)+[a+(-a)′] (A3)
(-a)=[(-a)+a]+(-a)′ (A1)
(-a)=0+(-a)′ (A3)
(-a)=(-a)′ (A2)
--------------------------------------------
Now I'm going to try to prove that if a is an element of G and its corresponding opposite is (-a)
Then: -(-a)=a (ie, the opposite of the opposite, leaves unaltered the element)
.Indeed, by definition
a+(-a)=0
.Therefore it is evident that the corresponding opposite of (-a) is a (Since the sum of them results in zero)
Therefore, we can write -(-a)=a
.Then
a-(-b)=a+[-(-b)]=a+b
Q.E.D?