Proving the Even Degree Property of Vertices in Closed Trails

tarheelborn
Messages
121
Reaction score
0

Homework Statement



All vertices in a closed trail have even degree.

Homework Equations


The Attempt at a Solution



Intuitively, I know this statement is true, but I can't seem to see a clear way to show it. I know that a closed trail is a path that connects vertices, so one would follow an edge through a vertex to another edge, thus indicating that, on this particular path, this particular vertex has degree two. Clearly, a non-closed trail has endpoints which must have odd degree because they reach a stopping point on the trail, with a vertex incident to only one edge. Will you please help me put these facts into a coherent proof? Thank you.
 
Physics news on Phys.org
Hint: how could you make a closed trail shorter? Also, be sure you know exactly what a closed trail is.
 
We could make a closed trail shorter by deleting a vertex. If we delete a vertex, the edges incident to that vertex are also deleted, so the trail would be shorter. But this action wouldn't necessarily affect the degree of vertices, would it?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top