Catria
- 145
- 4
Homework Statement
Prove that \gamma^{a}\gamma^{b}\gamma^{c}\gamma^{d}\gamma^{e}\gamma_{a} = 2\left(\gamma^{e}\gamma^{b}\gamma^{c}\gamma^{d}+\gamma^{d}\gamma^{c} \gamma^{b}\gamma^{e}\right)
Each of the \gamma^{i}s are as used in the Dirac equation.
Homework Equations
\gamma^{a}\gamma^{b}\gamma^{c}\gamma^{d}\gamma_{a} = -2\gamma^{d}\gamma^{c}\gamma^{b}
\gamma^{a}\gamma^{b} + \gamma^{b}\gamma^{a} = 2g^{ab}
The Attempt at a Solution
\gamma^{a}\gamma^{b}\gamma^{c}\gamma^{d}\gamma^{e}\gamma_{a} = 2g^{ab}\gamma^{c}\gamma^{d}\gamma^{e}\gamma_{a} - \gamma^{b}\gamma^{a}\gamma^{c}\gamma^{d}\gamma^{e}\gamma_{a}
= 2\gamma^{c}\gamma^{d}\gamma^{e}\gamma^{b} + 2\gamma^{b}\gamma^{e}\gamma^{d}\gamma^{c}
Perhaps I mixed up something or there is a typo...