Proving the gravitational force of a solid sphere using integration

AI Thread Summary
The discussion centers on the gravitational force of a solid sphere and the assumptions made in calculating it using integration. It highlights a misconception that the gravitational force from a circular plate can be treated as if its mass is concentrated at the center, which is not valid for all shapes. The argument emphasizes that while a sphere can be approximated as a point mass at its center, this does not hold for a disc due to the distribution of mass. The gravitational pull from a small part of the disc is shown to be less than if the mass were at the center, leading to an overestimation of the gravitational field if such assumptions are made. This analysis underscores the importance of correctly accounting for mass distribution in gravitational calculations.
Sam Jelly
Messages
15
Reaction score
1
Homework Statement
I am trying to calculate the gravitational force of mass m from a solid sphere with Radius R, mass M with uniform mass distribution. I am integrating the gravitaional force done by the thin circular plate. (I put mass m on top of every circular plate's center of mass). I know the solution to this is GmM/R^2, but my answer seems to be wrong. Is there any mistake? (mass m is on the surface of mass M)
Relevant Equations
dF = GmdM/r^2
D917654A-DC87-45BD-94A5-D8E816870D4B.png

This is my attempt at the solution. x from the equation dF = GmdM/x^2 represents the distance between the circular plate’s center of mass and mass m.
 
Physics news on Phys.org
It appears that you assume that the force between the plate and the mass ##m## is the same as if the mass ##dM## of the plate were in the center of the plate. Why would it be so?
 
I assumed that mass dM was in the center of each plate because the mass is distributed uniformly therefore it will be at the center of mass.
 
Sam Jelly said:
I assumed that mass dM was in the center of each plate because the mass is distributed uniformly therefore it will be at the center of mass.
This is wrong.

Essentially you are making an assumption about the overall gravity of an object where you cannot replace it by a point mass in the CoM, but you want to show it for a sphere - for which you can.
 
Sam Jelly said:
I assumed that mass dM was in the center of each plate because the mass is distributed uniformly therefore it will be at the center of mass.
If that were assumed to be true in general, there would be no point in proving it for the special case of a sphere!
 
As for a simple argument to see that it is not the case for a disc:

Consider the gravitational pull of a small part of the disc ##dm##. As long as the volume it is contained in is small, the gravitational pull at the point of interest can be approximated by the point source formula
$$
d\vec g = \frac{G\, dm}{x^2+r^2} \vec e,
$$
where ##\vec e## is a unit vector pointing from the point of interest towards the mass element. Now, by symmetry, the final gravitational field ##\vec g## must point towards the center of the disc, but there are two effects that both come into play for any ##r > 0##:
  1. The denominator ##x^2 + r^2 > x^2## so the first factor is always smaller than it would be if the mass ##dm## was on the symmetry axis.
  2. The component of the unit vector ##\vec e## will be smaller than 1
Both effects mean that the contribution of the mass ##dm## is smaller than it would be if you had put it at the center of mass. Since all mass elements (except for the one at ##r = 0##) give smaller contributions to the gravitational field than they would if they were at the center of mass, the result of approximating the full mass of the disc to be at the center of mass must overestimate the actual gravitational field.
 
  • Like
Likes Hill and PeroK
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top