BrainHurts
- 100
- 0
Homework Statement
Let f be a non-negative measurable function. Prove that
\lim _{n \rightarrow \infty} \int (f \wedge n) \rightarrow \int f.
The Attempt at a Solution
I feel like I'm supposed to use the monotone convergence theorem.
I don't know if I'm on the right track but I created a sequence of functions so that
h_1(x) \leq h_2(x) \cdots where
h_1(x) = \min(f_1(x), n)
h_2(x) = \min(f_2(x),n)
\vdots
h_n(x) = \min(f_n(x),n)
So the h(x) = \lim_{n\rightarrow\infty} h_n(x) = \lim_{n\rightarrow \infty} \min(f_n,n) = \lim_{n \rightarrow \infty}\min(f,n)