Proving the Series Sum of a Trigonometric Function with Exponentials

In summary, the problem is to prove that the given series is equal to 1/2 times the inverse tangent of the sine of y divided by the hyperbolic sine of x. This is done by using two identities and manipulating the given series to fit into the two identities. The first identity is the sum of odd powers of x and the second identity is the inverse tangent of x. By using these identities, the given series can be rearranged to equal 1/2 times the inverse tangent of the sine of y divided by the hyperbolic sine of x, thus proving the statement.
  • #1
arpon
235
16

Homework Statement


Prove that,
$$\sum _{n=1,3,5...} \frac{1}{n} e^{-nx} \sin{ny} = \frac{1}{2}\tan^{-1} (\frac{\sin{y}}{\sinh{x}})$$

Homework Equations



$$\tan^{-1}{x} = x - \frac{x^3}{3} +\frac{x^5}{5} - ... $$

3. The Attempt at a Solution

$$\sum _{n=1,3,5...} \frac{1}{n} e^{-nx} \sin{ny}$$
$$= \sum _{n=1,3,5...} \frac{1}{n} e^{-nx} Im(e^{i ny})$$
$$= \sum _{n=1,3,5...} \frac{ Im(e^{(-x+iy)n})}{n} $$
$$=Im( \sum _{n=1,3,5...} \frac{z^n}{n}) $$
where ##z=e^{-x+iy}##.
I am stuck here. Any help will be appreciated.
 
Physics news on Phys.org
  • #2
Looking at ##\sum_n \frac {(iz)^n}{n}## looks promising. Note the sum over all n >=1.
 
  • Like
Likes arpon
  • #3
Member warned that giving full solutions is not allowed at this site
Preliminaries... I'm going to use 2 identities.
Identity 1: $$\displaystyle \sum_{n\,\textrm{odd}}\frac{x^n}{n}=\frac 1 2 \ln \left(\frac {1+x} {1-x} \right)$$
Proof: From the Maclaurin expansion of ##\ln (1+x)## and ##\ln(1-x)##, we get,
$$\ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots$$
$$\ln (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots$$
Subtracting the 2nd expression from the 1st, we get,
$$\ln (1+x)-\ln (1-x)=2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\ldots\right)=2\sum_{n\,\textrm{odd}}\frac{x^n}{n}$$
$$ \therefore \sum_{n\,\textrm{odd}}{\frac{x^n}{n}} = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right) $$Identity 2: $$\displaystyle \tan^{-1}x=\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right)$$
Proof: Let, ## \tan^{-1}x=w ##. So,
$$ x=\tan w=\frac{\sin w}{\cos w}= \frac{\frac{e^{iw}-e^{-iw}}{2i}}{\frac{e^{iw}+e^{-iw}}{2}}= \frac{1}{i}\cdot\frac{e^{iw}-e^{-iw}}{e^{iw}+e^{-iw}} $$
\begin{align}
& \therefore x=\frac{1}{i}\cdot\frac{e^{iw}-e^{-iw}}{e^{iw}+e^{-iw}} \nonumber \\
& \Rightarrow x=-i\cdot\frac{e^{iw}-e^{-iw}}{e^{iw}+e^{-iw}} \nonumber\\
& \Rightarrow x(e^{iw}+e^{-iw})=-i(e^{iw}-e^{-iw}) \nonumber \\
& \Rightarrow e^{iw}(i+x)=e^{-iw}(i-x) \nonumber \\
& \Rightarrow e^{i2w}=\frac{i-x}{i+x} \nonumber \\
& \Rightarrow i2w=\ln\left(\frac{i-x}{i+x}\right) \nonumber \\
& \Rightarrow w=\frac{1}{2i}\cdot\ln\left(\frac{i-x}{i+x}\right)=-\frac{i}{2}\ln\left(\frac{i-x}{i+x}\right)=\frac{i}{2}\ln\left(\frac{i+x}{i-x}\right) \nonumber \\
& \therefore \tan^{-1}x=\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right) \nonumber \\
\end{align}

Now, for the proof of the problem...
\begin{align}
\sum_{n\, \textrm{odd}} \frac{1}{n} e^{-nx} \sin{ny} & = \sum_{n\, \textrm{odd}} \frac{1}{n} e^{-nx}\cdot \frac{e^{iny}-e^{-iny}}{2i} \nonumber\\
& = \sum_{n\, \textrm{odd}} \frac 1 n\cdot \frac{e^{-nx+iny}-e^{-nx-iny}}{2i} \nonumber\\
&= \frac{1}{2i} \left[\sum_{n\, \textrm{odd}} \frac{(e^{-x+iy})^n}{n} -\sum_{n\, \textrm{odd}} \frac{(e^{-x-iy})^n}{n}\right] \nonumber\\
&= \frac{1}{2i} \left[\sum_{n\, \textrm{odd}} \frac{z^n}{n} - \sum_{n\, \textrm{odd}} \frac{{\bar z}^n}{n}\right]\qquad (z=e^{-x+iy},\; \bar z = e^{-x-iy}) \nonumber\\
&= \frac{1}{2i}\left[\frac{1}{2}\ln \left(\frac{1+z}{1-z}\right)-\frac{1}{2}\ln \left(\frac{1+\bar z}{1-\bar z}\right)\right]\quad \textrm{(Identity 1)} \nonumber\\
&= \frac 1 2 \left[\frac{1}{2i}\ln \left(\frac{1+z}{1-z}\right)-\frac{1}{2i}\ln \left(\frac{1+\bar z}{1-\bar z}\right)\right] \nonumber\\
&= \frac 1 2 \left[-\frac{i}{2}\ln \left(\frac{i+iz}{i-iz}\right)+\frac{i}{2}\ln \left(\frac{i+i\bar z}{i-i\bar z}\right)\right] \nonumber\\
&= \frac 1 2 \left[-\tan^{-1}iz+\tan^{-1}i\bar z\right] \qquad \textrm{(Identity 2)} \nonumber\\
&= \frac 1 2 \left[\tan^{-1}i\bar z-\tan^{-1}iz\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{i\bar z-iz}{1+i^2z\bar z}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{ie^{-x-iy}-ie^{-x+iy}}{1-e^{-x-iy}\cdot e^{-x+iy}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{ie^{-x}(e^{-iy}-e^{iy})}{1-e^{-2x}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{ie^{-x}(-2i\sin y)}{1-e^{-2x}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{2\sin y}{e^x-e^{-x}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{\sin y}{\frac{e^x-e^{-x}}{2}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left(\frac{\sin y}{\sinh y}\right) \nonumber\\
\end{align}

And... we're done. :D :D :D
 
  • Like
Likes arpon

1. What is a series sum?

A series sum is the sum of all the terms in a series, which is a sequence of numbers or terms that follow a specific pattern.

2. How do you calculate a series sum?

To calculate a series sum, you need to add up all the terms in the series by following the specific pattern. This can be done manually or by using a mathematical formula, depending on the type of series.

3. What are some common types of series?

Some common types of series include arithmetic series, geometric series, harmonic series, and alternating series. Each type has its own distinct pattern and formula for calculating the series sum.

4. What is the importance of series sums in science?

Series sums are important in science because they allow us to model and understand various natural phenomena, such as population growth, radioactive decay, and electrical circuits. They also play a crucial role in mathematical and statistical calculations.

5. How can series sums be applied in real life?

Series sums have many practical applications in real life, such as predicting future trends, analyzing data, and solving problems that involve sequences. They are also used in financial calculations, engineering designs, and computer algorithms.

Similar threads

  • Calculus and Beyond Homework Help
Replies
3
Views
422
  • Calculus and Beyond Homework Help
Replies
1
Views
226
  • Calculus and Beyond Homework Help
Replies
11
Views
369
  • Calculus and Beyond Homework Help
Replies
6
Views
766
  • Calculus and Beyond Homework Help
Replies
16
Views
569
  • Calculus and Beyond Homework Help
Replies
1
Views
266
  • Calculus and Beyond Homework Help
Replies
4
Views
321
  • Calculus and Beyond Homework Help
Replies
1
Views
540
  • Calculus and Beyond Homework Help
Replies
22
Views
1K
  • Calculus and Beyond Homework Help
Replies
2
Views
920
Back
Top