Proving the Supremum Property in Real Analysis

pzzldstudent
Messages
43
Reaction score
0
I am really having a hard time in this intro to real analysis class. I feel as if I'm the only one in class who isn't getting it. I have an extremely hard time thinking abstractly and constructing my own proofs. I know I need a lot of practice. Here is the problem we have to prove:Claim: Let A be a nonempty subset of R (all real numbers -- how do I type the symbol for real numbers?). If α = sup A is finite, show that for each ε > 0, there is an a in A such that α – ε < a ≤ α.

My attempt of a proof: Assume α = sup A is finite. Then A is bounded above because it is not empty and its supremum is finite (by the definition that if E is a nonempty subset of R (all reals), we set sup E = ∞ if E is not bounded above). [my question is where does the “ε” come from?] By definition of supremum, there is an element ß in R such that ß < α and ß is not an upper bound. In this case let ε be the ß where ε > 0. Knowing α is the supremum, ε < α, so there is an element a in A such that ε < a ≤ α or α – ε < a ≤ α.

*I also need to prove the converse of this statement which is:
"Let A be a nonempty subset of R (all real numbers) that is bounded above by α. Prove that if for every ε > 0 there is an a in A such that α – ε < a ≤ α, then α = sup A."

When proving the converse, isn't it just basically working backwards?
So I would write: Assume that for every ε > 0 there is an a in A such that α – ε < a ≤ α.
A is nonempty and bounded above by α (given). Then α = sup A is finite by the definition of supremum.

I feel really confused and lost here. I'm really afraid of this class. I need to pass it because it is only offered every 2 years.

Any help, suggestions, and guidance is greatly appreciated.
Thank you.
 
Last edited:
Physics news on Phys.org
pzzldstudent said:
I am really having a hard time in this intro to real analysis class. I feel as if I'm the only one in class who isn't getting it. I have an extremely hard time thinking abstractly and constructing my own proofs. I know I need a lot of practice. Here is the problem we have to prove:


Claim: Let A be a nonempty subset of R (all real numbers -- how do I type the symbol for real numbers?). If α = sup A is finite, show that for each ε > 0, there is an a in A such that α – ε < a ≤ α.

My attempt of a proof: Assume α = sup A is finite. Then A is bounded above because it is not empty and its supremum is finite (by the definition that if E is a nonempty subset of R (all reals), we set sup E = ∞ if E is not bounded above). [my question is where does the “ε” come from?] By definition of supremum, there is an element ß in R such that ß < α and ß is not an upper bound. In this case let ε be the ß where ε > 0. Knowing α is the supremum, ε < α, so there is an element a in A such that ε < a ≤ α or α – ε < a ≤ α.

Your basic idea is good but you cannot say "let \epsilon be" something. You have to show that this is true no matter what \epsilon is. I would have started a little differently:
Given any \epsilon&gt; 0, α- \epsilon< α so is not an upper bound on A. Since it is not an upperbound, there exist x in A such that x> α-\epsilon.
 
I have to prove this same question for my real analysis class. My is at the graduate level and I feel like a complete idiot (however, I know I am not) Help me too.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top