Proving Trace Independence in Linear Algebra Homework

zheng89120
Messages
139
Reaction score
0

Homework Statement



let:
Trace(A) = Ʃ(i=1..n) (ei|A|ei)

Show that trace is independent of the orthonormal basis chosen.

Homework Equations



linear algebra

The Attempt at a Solution



trace is related to the eigenvalues, which are constant?
 
Physics news on Phys.org
zheng89120 said:

Homework Statement



let:
Trace(A) = Ʃ(i=1..n) (ei|A|ei)

Show that trace is independent of the orthonormal basis chosen.

Homework Equations



linear algebra

The Attempt at a Solution



trace is related to the eigenvalues, which are constant?

IF A a diagonalizable and IF the ei happen to be eigenvectors, then sure, it's easy to see the trace is the sum of the eigenvalues. But how does that help you show it's basis independent? How do you write the relation between A and A written in a different basis?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top