estro
- 239
- 0
Homework Statement
Suppose:
f(x)\ and\ f'(x)\ are\ continuous\ for\ all\ x \in R
For\ all\ x \in R\ and\ for\ all\ n \in N\ f_n(x)=n[f(x+\frac{1}{n})-f(x)]
Prove\ that\ when\ a,b\ are\ arbitrary,\ f_n(x)\ is\ uniform\ convergent\ in\ [a,b]
The Attempt at a Solution
\lim_{n\rightarrow \infty} f_n(x)=\lim_{n\rightarrow \infty} n[f(x+\frac{1}{n})-f(x)] = \lim_{t\rightarrow0} \frac {f(x+t)-f(x)}{t}=f'(x)\left \max_{[a,b]}|n[ f(x+\frac{1}{n}) -f(x)]-f'(x)|=|n[ f(x_0+\frac{1}{n}) -f(x_0)]-f'(x_0)|=|\frac {f(x_0+t)-f(x_0)}{t}-f'(x_0)|\rightarrow0 \right
I fear that I miss something terribly important.
*I left out all the little technical details to make things shorter.
[Edit] Will appreciate any remarks.
Last edited: