Proving Vector Space of F[x]/(g(x)) with Degree n

johnson123
Messages
16
Reaction score
0

Homework Statement



Show that F[x]/( g(x) ) is a n-dimensional vector space. where g is in F[x],
and g has degree n.

Its clear that F[x]/( g(x) ) is a vector space and that

B= (1,x^{2},...,x^{n-1}) spans F[x]/( g(x) ),

but I am having trouble showing that B is linearly independent

I realize this is pretty much a HW problem and it should be in the HW section, but I
read a post from one of the pf mentors noting that for gradlevel/seniorlevel problems
you might have a chance at a response from the non homework sections. thanks for any suggestions.
 
Physics news on Phys.org
Well, what happens if they are linearly dependent, so that a nontrivial linear combination of them is equal to zero in F[x] / (g(x))?
 
It's not clear that you have tied B to either F[x] or g(x). First relate B to F and g. Assume for the moment that I am not the person who doesn't have the answer.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top