I just want to know if I am understanding this correctly.(adsbygoogle = window.adsbygoogle || []).push({});

I am wondering what effect the rolling resistance has on the motion of a car when pushed, or when rolling to a stop. The mass of the car is 1,000kg.

I looked up on a table to find the rolling resistance coefficient of a normal car tire on asphalt and got .03 so that is the value I am using.

F_{rr}= .03 * 1,000kg * 9.8m/s² = 294 N

a = 294 N / 1,000 kg = .294m/s²

Question 1 :

Does this mean that if a 1,000kg car is at rest in nuetral, and I want to get that car rolling, I would need to apply a force greater than 294 N before the car would even begin to roll?

Question 2 :

If this car was already in motion at say, 3m/s, would it come to a stop in about 10.2 seconds? (t = 3m/s / .294m/s² = 10.2s)

I am ignoring any other sources of friction(ball bearings, etc), and the asphalt is perfectly level.

Any help would be greatly appreciated. Thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Pushing a car & rolling resistance of tires

**Physics Forums | Science Articles, Homework Help, Discussion**