Pushing a car & rolling resistance of tires

I just want to know if I am understanding this correctly.

I am wondering what effect the rolling resistance has on the motion of a car when pushed, or when rolling to a stop. The mass of the car is 1,000kg.

I looked up on a table to find the rolling resistance coefficient of a normal car tire on asphalt and got .03 so that is the value I am using.

Frr = .03 * 1,000kg * 9.8m/s² = 294 N

a = 294 N / 1,000 kg = .294m/s²

Question 1 :

Does this mean that if a 1,000kg car is at rest in nuetral, and I want to get that car rolling, I would need to apply a force greater than 294 N before the car would even begin to roll?

Question 2 :

If this car was already in motion at say, 3m/s, would it come to a stop in about 10.2 seconds? (t = 3m/s / .294m/s² = 10.2s)

I am ignoring any other sources of friction(ball bearings, etc), and the asphalt is perfectly level.

Any help would be greatly appreciated. Thank you.
 
466
1
That is a reasonable number for rolling resistance, which relates to the coefficient of dynamic friction. It would take more to get the car started.

Think of a locomotive, which could never start a train of cars at the same time because the coefficient of static friction is too high. But because it only has to start one car at a time, it has no trouble keeping them moving.
 
Last edited:

Related Threads for: Pushing a car & rolling resistance of tires

Replies
9
Views
1K
Replies
2
Views
915
  • Posted
Replies
11
Views
7K
Replies
1
Views
3K
Replies
9
Views
2K
Replies
4
Views
2K
  • Posted
Replies
7
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top