I'll give you an example look at equation (9.617) he didn't write them out for notation purposes, but there in there.
Example: Say to the one loop order I wanted to calculate the photon propagator/ ignoring renormalization terms in the Feynman gauge. Using equation (9.617) I'd have an integral like
<br />
\begin{gathered}<br />
- i\Delta _{\mu \tau } \left( {x,y} \right) = \left\langle {T\{ A_\mu (x)A_\tau (y)} \right\rangle = \hfill \\<br />
\frac{{\int {\left[ {\prod\limits_{z,m} {dq_m \left( z \right)} } \right]\left[ {\prod\limits_{z,m} {dp_m \left( z \right)} } \right]\left[ {\prod\limits_{z,m} {da_m (z)} } \right]} a_\mu (x)a_\tau (y)\exp \left( {i[ - \frac{1}<br />
{2}\int {d^4 zd^4 wa^\xi (z)a^\zeta (w)D_{z\xi ,w\zeta } - \sum\limits_{r,s} {p_r } } (z)q_s (w)K_{rz,sw} ]} \right)}}<br />
{{\int {\left[ {\prod\limits_{z,m} {dq_m \left( z \right)} } \right]\left[ {\prod\limits_{z,m} {dp_m \left( z \right)} } \right]\left[ {\prod\limits_{z,m} {da_m (z)} } \right]} \exp \left( {i[ - \frac{1}<br />
{2}\int {d^4 zd^4 wa^\xi (z)a^\zeta (w)D_{z\xi ,w\zeta } - \sum\limits_{r,s} {p_r } } (z)q_s (w)K_{rz,sw} ]} \right)}} \hfill \\ <br />
\end{gathered} <br />
where
q_m (x) = \psi _m (x)
<br />
p_m (x) = - [\bar \psi (x)\gamma ^0 ]_m <br />
<br />
K_{mx,ny} = \left( {\gamma ^0 \left( {\gamma ^\mu \frac{\partial }<br />
{{\partial x^\mu }} + m + ie\gamma ^\tau A_\tau (x)\delta ^4 (x - y) - i\varepsilon )} \right)} \right)<br /> and
<br />
D_{x\mu ,y\nu } = \left[ {\eta _{\mu \nu } \frac{{\partial ^2 }}<br />
{{\partial x^\rho \partial x_\rho }}\delta ^4 (x - y) + i\varepsilon } \right]<br />
Now, try to follow what Weinberg does on page 412. I'm going to integrate over the positions and momentums of the fermion fields at same time, and the field independent determinants will cancel out in the ratio leaving me with
<br />
- i\Delta _{\mu x,\tau y} = \left\langle {T\{ A_\mu (x)A_\tau (y)} \right\rangle = \frac{{\int {\prod\limits_{z,m} {da_m (z)a_\mu (x)a_\tau (y)\exp \left( {i - \frac{1}<br />
{2}\int {d^4 zd^4 wa^\xi (z)a^\zeta (w)D_{z\xi ,w\zeta } } } \right)\exp \left( {\sum\limits_{n = 1}^\infty {\frac{{( - 1)^{n + 1} }}<br />
{n}} Tr(F^{ - 1} G)^n } \right)} } }}<br />
{{\int {\prod\limits_{z,m} {da_m (z)\exp \left( {i - \frac{1}<br />
{2}\int {d^4 zd^4 wa^\xi (z)a^\zeta (w)D_{z\xi ,w\zeta } } } \right)\exp \left( {\sum\limits_{n = 1}^\infty {\frac{{( - 1)^{n + 1} }}<br />
{n}} Tr(F^{ - 1} G)^n } \right)} } }}<br />
where
<br />
F^{ - 1} (x,y) = \int {\frac{{d^4 k}}<br />
{{(2\pi )^4 }}} \frac{{ - \gamma ^0 }}<br />
{{i\gamma ^\mu k_\mu + m - i\varepsilon }}e^{ik \cdot (x - y)} <br />
and
<br />
G(x,y) = ie\gamma ^0 \gamma ^\mu a_\mu (x)\delta ^4 (x - y)<br />
Now I said I was only going to do this to one loop order, so I'll neglect all terms n>2 in my
sum in my exponent. I also don't have to worry about the n=1 term since it is tadpole and would break the symmetry of charge conjugation if I included it so I'll let you solve to one loop order, but you should get equation (11.2.1)