QFT - Derivative in Equation of Motion

Adoniram
Messages
93
Reaction score
6

Homework Statement


As part of a problem, I need to derive the EOM for a generalized Lagrangian. Before I get there, I'm trying to refresh myself on exactly how these derivatives work because the notation is so bizarre. I am trying to follow a simple example I found online:

Start with:
47eb7f2fdafef195081aceeb8f1c62a4.png


Homework Equations


The E-L eq:
c5a5a879417dd0515c350505abb55b97.png


The Attempt at a Solution


The actual solution is:
83077f5697553ab11092b8f121f6df28.png


I totally understand the second term, but the first term is bothering me (namely the part INSIDE the parentheses where there are all upper indices). How, pray tell, do we end up with all upper indices? Is it because the mu and nu are just dummy indices, and all that matters is that they are both lower and different? If so, then I can see how you end up with all upper indices. But, why are the upper indices on the right changed (mu <---> nu) if that's the case? Just to distinguish is from the left term so that they don't cancel? QFT is not my favorite subject...

Once I get this, I think I can tackle the actual problem I am solving, which is to find the EOM of the following Lagrangian:
la.png


Thank you!
 
Physics news on Phys.org
Looks like I found my own answer! Griffiths has a nice example (Problem 10.2) that shows exactly this. That guy has the answer to everything...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top