Is there a reason why you've written the \pm as subscripts on the RHS?...Surely you mean
L_{\pm}|l,m\rangle=\hbar\sqrt{(l\mp m)(l \pm m+1)}|l,m \pm 1\rangle
Right?
First, L_y is just an operator, \langle L_y\rangle=\langle\psi\vert\L_y\vert\psi\rangle is its expectation value.
Secondly, why are you calculating the expectation value? I thought you said the problem asked you to calculate L_y\vert\psi\rangle[/tex]...<br />
You need to be careful here, the states |0\rangle, |1\rangle and |-1\rangle correspond to the different values of m, so the coefficient \sqrt{\sqrt{(l\mp m)(l \pm m+1)}} will have different values when L_y operates on each state. For example, <br />
<br />
L_+\vert0\rangle=\hbar\sqrt{(1-0)(1+ 0+1)}|1,0+1\rangle=\sqrt{2}\hbar|1,1\rangle<br />
<br />
while<br />
<br />
L_+\vert1\rangle=\hbar\sqrt{(1-1)(1+ 1+1)}|1,1+1\rangle=0.<br />
<br />
You also need to operate on the state |\psi\rangle with L_y, <b>before</b> you multiply by \langle\psi|=\frac{1}{\sqrt{2}}\langle1|-\frac{1}{2}\langle0|+\frac{1}{2}\langle-1| and distribute the different inner products. For example,<br />
<br />
\left(\langle0|+\langle1|\right)L_{-}\left(|0\rangle+|1\rangle\right)=\langle0|L_{-}|0\rangle+\langle0|L_{-}|1\rangle+\langle1|L_{-}|0\rangle+\langle1|L_{-}|1\rangle\neq\langle0|L_{-}|0\rangle+\langle1|L_{-}|1\rangle