VortexLattice
- 140
- 0
Homework Statement
Homework Equations
Below
The Attempt at a Solution
So this is a lot like the infinite square well, except periodic. If S is an arc length, then S = \theta R so \frac{d^2}{dS^2} = \frac{1}{R^2}\frac{d^2}{d\theta^2}, which is more convenient to use in the hamiltonian. So for the hamiltonian I get:
H = \frac{-\hbar^2}{2m}\frac{1}{R^2}\frac{d^2}{d\theta^2} + V_0
With Schrodinger's equation, I get
\frac{d^2 \psi^2}{d\theta^2} = -\frac{2mR^2(E - V_0)}{\hbar^2}\psi
Which gives solutions of the form \psi = \frac{1}{\sqrt{2\pi}}e^{\pm i k \theta}, where k = \sqrt{\frac{2mR^2(E - V_0)}{\hbar^2}}.
Then, because it's a ring, we need \psi(x + 2\pi) = \psi(x) for any x, which gives us the requirement that k is an integer. So our energy levels are E = \hbar^2 k^2/2mR^2 + V_0, and it seems like they have a degeneracy of 4 because we have two functions for each k with the same energy, and then for each of them, the electron's spin can be up or down. Is that right?
As for part (b), I have no idea... Benzene has 6 free electrons, so according to my degeneracy, it completely fills the first energy level, and then there are 2 electrons in the 2nd energy level. Ok...then they ask about a compound with 4 electrons. This seems like it just fills the first energy level, but that seems too simple and stupid to be right.
Can anyone help me out?
Thanks!