Quantum mechanics - a free particle

maria clara
Messages
56
Reaction score
0
Hello everyone!

If we measure the position of a particle in a free space, and say we find that it is at x0,

what is the wavefunction right after the measurement in x representation?

shouldn't it be delta (x-x0), because delta functions are the eigenfunctions of the position operator?

Another question is how do I find the eigenfunctions of the Hamiltonian of a free particle in x representation?

Thanks in advance:blushing:
 
Physics news on Phys.org
maria clara said:
Hello everyone!

Hello! :)

If we measure the position of a particle in a free space, and say we find that it is at x0,

what is the wavefunction right after the measurement in x representation?

shouldn't it be delta (x-x0), because delta functions are the eigenfunctions of the position operator?

Yes, up to a normalization constant I think. I don't have my quantum book handy so you might want to check on this. But the wavefunction will at least be proportional to a delta function.

Another question is how do I find the eigenfunctions of the Hamiltonian of a free particle in x representation?

You solve the Schrodinger equation with V(x)=0.
 
thank you!:smile:

I solved the Schrodinger equation and got the function:
Aexp(ikx)+Bexp(-ikx).

This means that any private case (like A=0 and B=1) is an eigenfunction of the Hamiltonian. Can I conclude that the Hamiltonian has an infinite number of eigenfunctions?

I also notice that there are only two basic "types" here - exp(ikx) and exp(-ikx).
Does it mean that these two form a basis of the Hamiltonian eigenfunctions space? is it considered as a Hilbert space?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top