Quantum Mechanics Proof Homework Help

SlushmanIU
Messages
2
Reaction score
0
I was asked to prove that any function u(z,t)=f(z-vt) is a solution of the wave equation
∂2u/ dt2= v2 · ∂2u/dz2

I know that v is constant and z and t are independent. I've tried looking at Lorentz law but I am getting nowhere fast. Please help!
 
Physics news on Phys.org
Hello Slushman, and welcome to the wonderful world of PF :)

We don't have many rules (just a bunch of well-meant guidelines, which please read). They do require (so you could construe that as a rule) some effort on your part in the sense that you show your attempt at solution. They also want you (so you could construe that as a rule as well -- but it's all well meant!) to use the template, which happened to disappear as if by magic from your post. Pity, I could have helped immediately, instead of tomorrow morning (it's late here, but perhaps others ...)

1. Homework Statement

2. Homework Equations

3. The Attempt at a Solution

When I fill in the propposed solution, I get ...​
 
Hi. This is pure mathematics so Lorentz has nothing to do with your proof:
How do you take the partial time-derivative of f(z-vt)? That is: f[z(t) -vt]?
Look up a calculus book if that's unfamiliar..
 
Slushman still there ?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top