[Quantum mechanics] Step barrier |R|^2 and |T|^2

Aaron7
Messages
12
Reaction score
0

Homework Statement



There is a step barrier at x=0, V_0 > E
I am given:
ψi = e^i(kx−ωt) --->
ψr = R e^i(−kx−ωt) <---

ψt = T e^(−αx−iωt) --->

Part of question I am confused about: State the two boundary conditions satisfied by the wave function at x = 0 and hence find expressions for |R|^2 and |T|^2

Homework Equations


N/A


The Attempt at a Solution


I have already worked out an equation for alpha in the previous part.

ψ1 = ψi + ψr
ψ2 = ψt

I started to apply the conditions ψ1(0) = ψ2(0) to get 1 + R = T
and d/dx ψ1(0) = d/dx ψ2(0) to get ik - iRk = -αT

I solved the above to get R = (ik +αT) / ik with T = 1 + R etc
I understand that |R|^2 = R x R* and |T|^2 = T x T*
However I am told that T = 1 - R since these are probability coefficients. Do I solve with T = 1-R (probability coefficients) or T = 1+R (using ψ1(0) = ψ2(0))? I am confused which one to use and why.

Many thanks.
 
Physics news on Phys.org
Aaron7 said:
ψi = e^i(kx−ωt) --->
ψr = R e^i(−kx−ωt) <---

ψt = T e^(−αx−iωt) --->

ψ1 = ψi + ψr
ψ2 = ψt

I started to apply the conditions ψ1(0) = ψ2(0) to get 1 + R = T
and d/dx ψ1(0) = d/dx ψ2(0) to get ik - iRk = -αT

However I am told that T = 1 - R since these are probability coefficients.
Well, ask yourself: should you expect the wavefunction to violate the Schrodinger equation at x=0, and if so, why?

The probability interpretation only makes since with respect to a normalization, usually the L2 norm for wavefunctions. Unfortunately, the friendly plane wave that makes naive calculations so simple wreaks havoc on the L2 norm. (Plane waves for free particles actually live in a different kind of quantum space than normalizable/quantized wavefunctions.) I don't know what you mean by calling R and T "probability coefficients", but I believe that your equations for R and T (the ones that you derived) are correct (assuming that the wavefunction obeys the Schrodinger equation, which T = 1 - R would actually violate at x = 0).

I think it doesn't even make sense to compare |R|2 to |T|2 as probabilities, because I think that the probability of transmission is zero, but I will have to think back to my QM (and that is a long way back).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top