Robben
- 166
- 2
Homework Statement
Normalize the wave function $$ \langle x|\psi\rangle = \left\{ \begin{array}{l l} Ne^{-kx} & \quad x>0\\
Ne^{kx} & \quad x<0 \end{array} \right..$$
Determine the probability that a measurement of the momentum p finds the momentum between ##p## and ##p + dp## for this wave function.
Homework Equations
##\langle p|\psi\rangle = \frac{1}{\sqrt{2\pi \hbar}}\int^{\infty}_{-\infty}e^{-ipx/\hbar}\psi(x)dx.##
The Attempt at a Solution
I am wondering if I did this correctly?
Normalization:
$$1 = \int^{\infty}_{0}|\psi(x)|^2dx = |N|^2\int^{\infty}_{0} e^{-2kx}dx \implies N = \sqrt{2k}.$$
$$\langle p|\psi\rangle = \psi(p) = \frac{1}{\sqrt{2\pi \hbar}}\int^{\infty}_{-\infty}e^{-ipx/\hbar}\psi(x)dx = \frac{N}{\sqrt{2\pi \hbar}} \left[\int^{\infty}_0e^{-ipx/\hbar}e^{-kx}dx + \int^0_{-\infty}e^{-ipx/\hbar}e^{kx}dx\right].$$