Quantum Physics - Frankhertz experiment

AI Thread Summary
The discussion focuses on the Frank-Hertz experiment, particularly the energy transfer during electron collisions with mercury atoms. It addresses the maximum energy loss for electrons with 4.0 eV and 6.0 eV of kinetic energy, questioning whether momentum conservation applies and if the collisions are inelastic. Additionally, it explains that the collecting anode is negatively charged to prevent electrons from gaining extra kinetic energy after passing through the grid. The necessity of operating the Franck-Hertz tube at elevated temperatures is highlighted, as it enables the cathode to emit electrons effectively, while excessive heating may lead to higher resistance and inaccurate results. Understanding these principles is crucial for conducting the experiment accurately.
vorcil
Messages
395
Reaction score
0
I'm doing the frank hertz experiment and in preparation I'm trying to get a few questions answered.

any help would be greatly appreciated,

8.
Considering that the energy of the 1st excited state of the mercury atom is ~4.8eV above that of the ground state, what is the maximum amount of energy that an electron with 4.0 eV of kinetic energy can loose to a mercury atom with which it collides? What about for a 6.0 eV electron (neglect the recoil at mercury atom)?

I haven't really done quantum physics study before(not yet in a few weeks we start), BUT I do know from memory that,
1eV = (1.6*10^-19C)*(1V) = 1.6*10^-19 Joules

so I'm guessing that the Electron upon collision with the mercury atom, would transfer most of it's energy to the mercury atom,

I'm going to say the whole 4eV = 4*(1.6*10^-19J) = 6.4*10^-19 Joules

Not sure though, Do I have to use momentum and conservation of momentum?
Is it an in-ellastic collision?

How would I answer for the energy of a 6eV electron coliding with the mercury atom? 7.
Why is the collecting anode made negative with respect to the grid?
I can actually answer this question, but would like some one to check

The cathode emits electrons to pass through the grid and be collected at the anode,

so the anode is kept at a lower potential than the grid to stop the electrons from getting extra kinetic energy9.
Why must the Franck‐Hertz tube be operated at an elevated temperature? What is the consequence of going to a temperature even higher than recommended?
Well I thought that the tube gets hot because of the cathode being heated up,

the only way for the cathode to emit electrons would be to heat it to give it enough energy for electrons to be emitted

consequences of heating the tube higher would be a higher resistance in the circuit perhaps? giving innacurate results?

is this a valid answer to the question?
 
Last edited:
Physics news on Phys.org
Yes, your answer is valid. The Franck-Hertz tube needs to be operated at an elevated temperature because it allows the cathode to emit electrons with enough energy to pass through the grid and be collected at the anode. Going to a temperature even higher than recommended could result in a higher resistance in the circuit, which could lead to inaccurate results.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top