Question about an LTI System and its Frequency Response

AI Thread Summary
The discussion centers on understanding LTI (Linear Time-Invariant) systems and their impulse responses. The user is attempting to derive the impulse response h(t) from given sinusoidal input and output functions using MATLAB's FFT and convolution functions. However, they encounter discrepancies, leading to confusion about whether their system is truly LTI, as the output frequencies do not match the input frequencies. The responses emphasize that the user may be incorrectly assuming the system's linearity by arbitrarily defining the output function. It is recommended to study LTI systems more thoroughly and generate an appropriate impulse response to observe the expected behavior.
ntran26
Messages
2
Reaction score
0
Hello All,
I am trying to learn about lti systems and what not for my research work but before I can apply my research I have to understand the fundamentals, which is what this question is kind of about!

I want to find h(t), the impulse response of an LTI system where my input and output are sinusoids. So I have made two functions.
Input(t)=4*SIN(3*t+PI/8)+9*SIN(4*t-PI()/6)
Output(t)=2*SIN(8*t+PI/3)+5*SIN(2*t-PI()/7)
I did use matlab's fast Fourier transform to bring results of n^10 data points to the frequency domain.
I then do output(w)/input(w) ,output and input in frequency domain, to get H(w), the frequency response. I then use MATLAB to apply the inverse fast Fourier transform to H(w) to obtain h(t).

I use matlabs convolution function which should result in I(t)*h(t)=o(t)

The problem is that this is not matching up.

Am i doing something wrong with my thought process? Thanks!
 
Engineering news on Phys.org
Your system is nonlinear, so it is not LTI. In particular, the output frequencies of a linear system must match those of the input (another way of saying that sines and cosines are the eigenfunctions of an LTI system).

It is invalid to arbitrarily make up an output function. I suggest you read and understand LTI systems, then you can generate an appropriate impulse response and watch what it does to your input signal. (Alternately, work the exercises in your textbook...)
 
marcusl said:
Your system is nonlinear, so it is not LTI. In particular, the output frequencies of a linear system must match those of the input (another way of saying that sines and cosines are the eigenfunctions of an LTI system).

It is invalid to arbitrarily make up an output function. I suggest you read and understand LTI systems, then you can generate an appropriate impulse response and watch what it does to your input signal. (Alternately, work the exercises in your textbook...)
I see, thank you! Unfortunately, I do not have any textbooks on this subject and have just been using online resources. I am using a reservoir simulator, where I apply a pressure pulse that is sinusoidal and observing pressures at another location. The reservoir is supposed to be an LTI system, but I cannot seem to get the convolution correctly. Thank you for your help!
 
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
Thread 'How Does Jaguar's 1980s V12 Dual Coil Ignition System Enhance Spark Strength?'
I have come across a dual coil ignition system as used by Jaguar on their V12 in the 1980's. It uses two ignition coils with their primary windings wired in parallel. The primary coil has its secondary winding wired to the distributor and then to the spark plugs as is standard practice. However, the auxiliary coil has it secondary winding output sealed off. The purpose of the system was to provide a stronger spark to the plugs, always a difficult task with the very short dwell time of a...
Back
Top