Question about an LTI System and its Frequency Response

AI Thread Summary
The discussion centers on understanding LTI (Linear Time-Invariant) systems and their impulse responses. The user is attempting to derive the impulse response h(t) from given sinusoidal input and output functions using MATLAB's FFT and convolution functions. However, they encounter discrepancies, leading to confusion about whether their system is truly LTI, as the output frequencies do not match the input frequencies. The responses emphasize that the user may be incorrectly assuming the system's linearity by arbitrarily defining the output function. It is recommended to study LTI systems more thoroughly and generate an appropriate impulse response to observe the expected behavior.
ntran26
Messages
2
Reaction score
0
Hello All,
I am trying to learn about lti systems and what not for my research work but before I can apply my research I have to understand the fundamentals, which is what this question is kind of about!

I want to find h(t), the impulse response of an LTI system where my input and output are sinusoids. So I have made two functions.
Input(t)=4*SIN(3*t+PI/8)+9*SIN(4*t-PI()/6)
Output(t)=2*SIN(8*t+PI/3)+5*SIN(2*t-PI()/7)
I did use matlab's fast Fourier transform to bring results of n^10 data points to the frequency domain.
I then do output(w)/input(w) ,output and input in frequency domain, to get H(w), the frequency response. I then use MATLAB to apply the inverse fast Fourier transform to H(w) to obtain h(t).

I use matlabs convolution function which should result in I(t)*h(t)=o(t)

The problem is that this is not matching up.

Am i doing something wrong with my thought process? Thanks!
 
Engineering news on Phys.org
Your system is nonlinear, so it is not LTI. In particular, the output frequencies of a linear system must match those of the input (another way of saying that sines and cosines are the eigenfunctions of an LTI system).

It is invalid to arbitrarily make up an output function. I suggest you read and understand LTI systems, then you can generate an appropriate impulse response and watch what it does to your input signal. (Alternately, work the exercises in your textbook...)
 
marcusl said:
Your system is nonlinear, so it is not LTI. In particular, the output frequencies of a linear system must match those of the input (another way of saying that sines and cosines are the eigenfunctions of an LTI system).

It is invalid to arbitrarily make up an output function. I suggest you read and understand LTI systems, then you can generate an appropriate impulse response and watch what it does to your input signal. (Alternately, work the exercises in your textbook...)
I see, thank you! Unfortunately, I do not have any textbooks on this subject and have just been using online resources. I am using a reservoir simulator, where I apply a pressure pulse that is sinusoidal and observing pressures at another location. The reservoir is supposed to be an LTI system, but I cannot seem to get the convolution correctly. Thank you for your help!
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top